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This paper is devoted to the numerical simulation of nonisothermal crystallization of poly-
mers, which may be modelled as a stochastic birth-and-growth process. One of the main
aims is to develop efficient algorithms for the stochastic simulation of such process. We put
a special emphasis on the problem of computing the surface density of crystals, which is an
important factor for the mechanical properties of the solidified material. Moreover, an aver-
aged deterministic model, designed as an approximation in the case of many small crystals
(which is very frequent in industrial applications), is presented, and the results of numerical
simulations are compared with the corresponding simulations of the stochastic model.
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1. Introduction

This paper is devoted to the numerical simulation of nonisothermal crystallization
of polymers, which is a topic of growing interest in material science and chemistry
with many relevant industrial applications. A crystallization process is in general the
superposition of two basic features, namely nucleation and growth of crystals. While
the growth process may be considered deterministic (with normal speed G = G(x, t),
the growth rate, depending upon the temperature field), nucleation occurs randomly in
space and time (the kinetic parameters being themselves temperature dependent). We
will consider a crystallization process in a bounded domain E ⊂ Rd (d = 1, 2, 3) and
assume that nucleation takes place only in the interior of E.

We will denote by 	t the crystalline phase at time t and by 	t(X0, T0) a crystal
born at point X0 at time T0 and freely grown up to time t . In a crystallization process
with nucleation events {(Xj , Tj ) | 0 � T1 � T2 � · · ·}, the crystalline phase at time t is
given by
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	t =
⋃
Tj<t

	t(Xj , Tj ). (1.1)

Note that because of the stochasticity of nucleation, the set	t is stochastic and since in a
bounded space-time region it is also closed and bounded, hence, it is a random compact
set (RACS) [1]. It turns out (cf. [2,3]) that on a macroscopic scale the quantity

ξ(x, t) := E[
I	t (x)

] = P ({
x ∈ 	t

})
, x ∈ E, t ∈ R+ (1.2)

(usually called crystallinity or local volume density) is suitable for the description of the
crystallization process in many cases relevant in practice. In the simple case of spatially
homogenous growth and nucleation, equations for ξ (which is then a function of time
only) can be derived based upon the classical approaches by Avrami, Kolmogorov and
Evans (cf. [4–6]). These models yield a good description of isothermal processes and
have been investigated frequently in bounded and unbounded domains (cf. [3,7–10]).

In many applications further characteristics of the final morphology are of interest,
in particular the interfaces between the crystals (see figure 1), which heavily influence
the mechanical properties of the material (cf. [11]). Because of impingement, at a certain
time t of the crystallization process the available space is randomly divided into cells,
forming a so called (incomplete) Johnson–Mehl tessellation [12,13] (the tessellation is
incomplete at time t if some uncrystallized space is still available). In the following
τi(y) will denote the time at which a point y ∈ E is reached by the crystal freely grown
(disregarding impingement) from the nucleus ai = (Xi, Ti). If the point is never covered
by the ith crystal, we formally write τi(y) = ∞.

Figure 1. The Johnson–Mehl tessellation generated in a polymer crystallization process in experiment (left)
and numerical simulation (right).
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Definition 1.1. The crystal Ci(t) of the (incomplete) tessellation, generated by the nu-
cleus ai = (Xi, Ti), at the time of observation t is the non-empty set

Ci(t) =
{
y ∈ E | τi(y) � t and τi(y) � τj (y) ∀j �= i

}
.

We will denote by Ce(t) the uncrystallized region at time t , i.e.,

Ce(t):=
{
y ∈ E | τi(y) > t, ∀i ∈ N}

.

In order to describe rigorously the concept of “interface” between crystals, we introduce
the definition of n-facet (cf. also [12–14]):

Definition 1.2. An n-facet (0 � n � d) is the non-empty intersection between m + 1
crystals or between m crystals and the amorphous region, i.e.,

Fn(t, ak0 , . . . , akm) = Ck0(t) ∩ Ck1(t) ∩ · · · ∩ Ckm(t),
with m = d − n and k0, . . . , km ∈ N ∪ {e}.

Note that in the previous definitions d denotes the dimension of the space in which
the tessellation takes place, n denotes the dimension of the interface under consideration,
and m+ 1 denotes the number of crystals involved in the formation of such an interface,
if we consider the amorphous region as a particular crystal itself. E.g., in the case d = 2,
a 2-facet is a crystal, a 1-facet is the boundary of a crystal and a 0-facet is a vertex of a
crystal (see figure 2). Note also that Fn is a stochastic quantity, depending on the random
space-time point process {ak}k∈N.

Figure 2. Examples of an incomplete Johnson–Mehl tessellation and n-facets in two spatial dimensions.
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For a Borel set B one can define the stochastic and the mean content of n-facets at
time t in B:

Definition 1.3. We call stochastic content of n-facets at time t in the Borel set B ⊂ E
the quantity

M̃d,n(t, B) = 1

(m+ 1)!

[ �=∑
ak0 ,...,akm

λn
(
B ∩ Fn(t, ak0 , . . . , akm)

)]
, (1.3)

where λn is the n-dimensional Hausdorff measure and the symbol �= denotes that the
nuclei ak0 , . . . , akm must be distinct.

Definition 1.4. We call mean content of n-facets at time t in the Borel set B ⊂ E the
quantity

Md,n(t, B)=E
(
M̃d,n(t, B)

)
= 1

(m+ 1)!E
[ �=∑
ak0 ,...,akm

λn
(
B ∩ Fn(t, ak0 , . . . , akm)

)]
. (1.4)

If the measure Md,n(t, ·) is absolutely continuous with respect to the d-di-
mensional Lebesgue measure νd , then there exists a density (i.e., the Radon–Nikodym
derivative ofMd,n with respect to νd ) µd,n(t, x) such that for all Borel sets B in E

Md,n(t, B) =
∫
B

µd,n(t, x) dx. (1.5)

Definition 1.5. The function µd,n(t, x) defined by (1.5) is called local mean density of
n-facets of the (incomplete) tessellation at time t .

If the birth-and-growth process that generates the tessellation is spatially homo-
geneous (which means in our case that the temperature field is constant in space), the
density µd,n(t, x) does not depend on the spatial location x (cf. [14] for a detailed dis-
cussion of this case).

In the following we discuss problems related to the numerical simulation of a sto-
chastic model for heterogeneous growth in the presence of a spatially varying tempera-
ture field and the comparison with a deterministic model obtained under the assumption
that nucleation is much faster than growth, so that averaging is possible based on a multi-
ple scale idea. Both models have been introduced and described in detail by the authors
(cf. [2,16,17]); we will give a short exposition in section 2. The problem of simula-
tion is discussed including various aspects in sections 3 and 4. In the latter we will put
special emphasis on the problem of computing the mean density of interfaces of crys-
tals (µd,d−1, for d = 1 and d = 2). We will finally conclude and discuss some open
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problems related with the numerical simulation and optimal control of nonisothermal
crystallization in section 6.

2. Mathematical modelling

In the following we will review the development of mathematical models for non-
isothermal crystallization in a stochastic as well as in a deterministic setup. The stochas-
ticity of the crystallization process is caused by the randomness of the nucleation events,
the standard model for nucleation is an heterogeneous Poisson-like process in space and
time (with rate α = α(x, t), cf., e.g., [2,16]). In an experimental situation, where het-
erogeneities are caused only by the heat transfer in the material, the nucleation rate can
be modelled as a temperature-dependent material function (cf. [2,3]) of the form

α(x, t) = ∂

∂t
Ñ

(
T (x, t)

) + Ṅ(
T (x, t)

)
. (2.1)

This assumption is due to experimental observations which show that nucleation
events are mainly caused by cooling (athermal nucleation), but in many materials
still some rare nucleations may be observed when the cooling is stopped (i.e., when
∂T /∂t = 0) at a temperature between the melting and the glass transition point. Since
the term Ṅ responsible of nucleation without cooling (thermal nucleation) is much
smaller than the term Ñ in general, we restrict our attention to the case Ṅ = 0 in the
following, but we note that all models and methods may be adapted easily to the more
general case (2.1).

Crystal growth can be modelled as a deterministic process; the evolution of the
indicator function f j of the crystal 	j is determined by the nonlinear initial-value prob-
lem

∂f j

∂t
+G∣∣∇f j ∣∣ = 0 in E × (Tj ,∞), (2.2)

∂f j

∂t
= δ(· −Xj) in E × {Tj }, (2.3)

where Xj and Tj are location and time of the birth of the crystal (cf. [16,18]) and G de-
notes the normal speed of growth (the growth rate). An experimentally verified model
for the growth rate is pure temperature-dependence, i.e.,

G(x, t) = G̃(
T (x, t)

)
. (2.4)

The experimental results for G̃ in the case of isotactic polypropylene are shown in
figure 5. The indicator function f = I	t is determined by the indicator functions f j via

f (x, t) = 1−
∏
Tj�t

(
1− f j (x, t)). (2.5)
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The above considerations allow us to compute a realization of the stochastic crys-
tallization process if the temperature field is known. The temperature T is determined
by the standard heat equation together with a source arising from the latent heat, which
is released at the moment of phase change and causes an immediate rise of temperature,
more precisely,

(ρcT )t =∇ · (κ∇T )+ (hI	t )t in E × R+, (2.6)

T = T 1 on ∂E × R+, (2.7)

T = T 0 in E × {0}, (2.8)

where equation (2.6) has to be understood in a weak sense. Here ρ denotes the density,
c the heat capacity, κ the heat conductivity, and h the latent heat.

This heat transfer model is a random differential equation, since all parameters
depend upon the random variable I	t . A direct consequence is the stochasticity of the
temperature, whose evolution depends upon the change of the crystalline phase. The
complete stochastic model of the crystallization process is given by the random differ-
ential equations (2.2)–(2.8) together with the Poisson process {(Xj, Tj )}.

In many industrial applications cooling is large, which implies together with the
scale of Ñ (varying from around 106 m−1 in R1 up to around 1016 m−3 in R3) that the
number of nuclei per unit volume is very large. On the contrary, the growth rate is quite
small (below 10−5 m·s−1), and consequently, we may expect many and small crystals.
The typical scale of the heat transfer problem is given by

xT =
√
κ0t0

ρ0c0
, (2.9)

where t0 is the length of the considered time interval, κ0, ρ0 and c0 are typical scales for
κ , ρ and c. The typical scale for the growth of a nucleus is given by

xG = G0t0, (2.10)

where G0 is a typical value for the growth rate G. In practical applications it turns out
that xT � xG, which is due to the fact that crystal growth is very slow, compared with
heat conduction. This means that there exist two significant scales for the system, i.e.,

• a microscale (of size xG) for growth,

• a macroscale (of size xT ) for heat conduction.

The scale of real interest in polymer processing is a mesoscale between xT and
xG, which is sufficiently small with respect to the macroscale so that temperature may
be considered approximately constant at that scale, but large enough with respect to
the microscale so that it contains a large number of crystals. On such a mesoscale the
description by an averaged deterministic model (cf. [2,16,17]) is possible, describing
the evolution of ξ , u, v and T , which represent averaged quantities for the crystallinity
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function, the free surface densities of crystals and temperature. The resulting system
consists of deterministic partial differential equations given by

∂ξ

∂t
= G̃(T )(1− ξ)u, (2.11)

∂u

∂t
=∇ · (G̃(T )v)+ Fd[G̃, Ñ, T ]

, (2.12)

∂v

∂t
=∇(

G̃(T )u
)
, (2.13)

∂T

∂t
= 1

ρc
∇ · (k∇T )+ h

c

∂ξ

∂t
, (2.14)

in E × (0, t∗), supplemented by the boundary conditions

u+ vT n = 0, (2.15)
∂T

∂n
= α(

T − T 1), (2.16)

on ∂E × (0, t∗), and initial values given by

ξ = 0, (2.17)

u= 0, (2.18)

v= 0, (2.19)

T = T 0, (2.20)

in E × {0}, usually with T 0(x) � Tm (melting temperature) for all x ∈ E. The source
term Fd is a nonlinear operator dependent upon the spatial dimension; it is just the
expected value of the rate of surface production by the crystals, more precisely (if
Ñ(T 0) = 0, cf. [16,17])

F1
[
G̃, Ñ , T

]
(x, t) := 2

∂

∂t
Ñ

(
T (x, t)

)
, (2.21)

F2
[
G̃, Ñ , T

]
(x, t) := 2πG̃

(
T (x, t)

)
Ñ

(
T (x, t)

)
, (2.22)

F3
[
G̃, Ñ , T

]
(x, t) := 8πG̃

(
T (x, t)

) t∫
0

G̃
(
T (x, s)

)
Ñ

(
T (x, s)

)
ds. (2.23)

3. Numerical methods for the averaged model

An algorithm for the numerical approximation of the averaged model (2.11)–(2.20)
has been proposed in [17] and analyzed with respect to convergence (cf. [19]). The basic
idea of this algorithm is to perform an explicit time step in the hyperbolic part of the
system together with an implicit step in the heat equation, which yields a decoupling
and partial linearization in each time step. In semidiscrete form, this strategy for the
hyperbolic part reads



176 A. Micheletti, M. Burger / Simulation of crystallization of polymers

ξ j+1= ξ j + τ j (1− ξ j)G̃(
T j

)
uj , (3.1)

uj+1= vj + τ j (∇(
G̃

(
T j

)
vj

)+ Fd[G̃,Nt, T j ]), (3.2)

vj+1=wj + τ j (∇(
G̃

(
T j

)
uj

))
. (3.3)

By the index j we denote the function at time tj , and τ j = tj+1− tj is the j th time step.
For the full discretization any appropriate method like Lax’s method (cf. [20]) or the
Lax–Wendroff method for problems with source terms (cf. [20–22]) can be used. The
stability bound for these methods is given by the Courant–Friedrichs–Levy condition
(cf. [20,23]), i.e.,

2(maxG)τ � 0x. (3.4)

Because of the small size of G, this bound is not very restrictive and still allows a good
performance of the algorithm.

For the numerical approximation of the parabolic part one can then use standard
discretization methods like the Crank–Nicholson scheme, since the source including ξ
is known at time t = tj+1. Hence, we can solve the model equations efficiently by the
following algorithm:

Algorithm 3.1 (Numerical solution of the averaged model).
Set the initial values ξ 0 = u0 = v0 = 0.
for j = 0 to n− 1 do

1. Compute Fd [G̃, Ñ, T j ].
2. Compute uj+1 and vj+1 by an explicit step for (2.12), (2.13), (2.15).

3. Compute ξ j+1 by an implicit (with respect to u) or explicit step in (2.11).

4. Solve the heat equation (2.14), (2.16) in [tj , tj+1) using ξ j+1 and ξ j for the
right-hand side to obtain T j+1.

end

4. Simulation of the stochastic model

We turn our attention to an (efficient) simulation of the stochastic model (i.e.,
(2.6)–(2.7), coupled with the stochastic evolution of the term I	t ), which consists of
three main parts:

• Nucleation, which is the part with intrinsic stochasticity.

• Growth of the crystals nucleated at random locations.

• Heat conduction, which is influenced by the crystalline phase.

We put a special emphasis on the computation of the boundary densities of the
crystals µd,d−1, which will be denoted shortly by SV below (the symbol SV in place of
µd,d−1 is commonly used by some authors [24] to denote the (mean) surface density per
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unit volume of a random set). The boundary density corresponds to the mean number
of vertices of crystals per unit length, when d = 1, and to the mean length of boundary
segments of crystals per unit area, when d = 2.

4.1. Nucleation

Since the nucleation rate α(x, t) depends on space and time, the birth of new crys-
tals may be represented by an inhomogeneous space-time Poisson process (see, e.g.,
[25,26]) having stochastic intensity α (actually α(1 − I	t ), since crystals already cov-
ered at the time of their birth are not of interest).

A standard algorithm for the simulation of such processes is the thinning or random
sampling method (see [27, p. 77]). This method consists in simulating an homogeneous
Poisson process with constant intensity α̂, satisfying

α(x, t) � α̂ ∀x ∈ E, t ∈ R+.
In a subsequent thinning step a uniformly distributed random variable Ri ∈ [0, 1] is
evaluated for each generated point {(xi, ti)}, which is then retained if Ri > α(xi, ti)/ α̂.
For our problem it turns out this algorithm enforces a very high computational effort,
since the number of generated points is much larger than the number of points that are
finally kept. Therefore, we use a different approach, taking into account the spatial
discretization of the domain E. Suppose we have a decomposition

E=
m⋃
i=1

Ei, (4.1)

0= t0 < t1 < · · · < tn = tfinal, (4.2)

with diamEi and |tj − tj−1| sufficiently small such that the intensity of the process can
be well approximated by a constant in each space-time cylinder Ei × (tj , tj−1). Then we
can simulate the births in the time interval (tj , tj+1) via the following algorithm:

Algorithm 4.1 (Generation of births in the time interval (tj , tj+1)).
for i = 1 to m do

1. Compute αij :=
∫ tj+1
tj

∫
Ei
α(x, t) dx dt .

2. Generate a random number Pi , Poisson distributed with intensity αij . This
number represents the number of “virtual” births in the ith space cell of the
discretization.

3. Generate Pi independent random numbers U1, . . . , UPi having uniform distrib-
ution in the cell Ei . These numbers represent the locations of the new “virtual”
nuclei in the cell Ei .

4. Check if the new “virtual” nuclei are already covered by the crystalline phase:
if yes, delete them, otherwise add them to the set of nuclei.

end
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Note that if we are not interested in the evolution of the interfaces between two
crystals, but only in the evolution of the crystallinity, we may disregard the effects of
impingement and do not need to perform step 4 in the previous algorithm. Indeed, a
new “virtual” crystal that is inside another one will never grow out of it [25,26]. Hence,
the indicator function I	t does not change because of the presence of the new “virtual”
nuclei inside the crystalline phase.

4.2. Growth

Together with the nucleation, we have to simulate the growth of crystals and their
interaction with heat transfer.

In spatial dimension one, a crystal 	k nucleated at (Xk, Tk) is an interval [ck, dk],
the evolution of the boundary is determined by

d

dt
ck(t) = −G

(
ck(t), t

)
,

d

dt
dk(t) = G

(
dk(t), t

)
, (4.3)

with initial values ck(Tk) = dk(Tk) = Xk. Hence, an obvious way to compute the growth
of a single crystal is to apply a numerical scheme to the nonlinear ordinary differential
equations (4.3). Since the time steps and the increments in G are usually very small
in realistic simulations, even an explicit method yields reasonable results. Hence, if
impingement is disregarded and we are interested only in the evolution of I	t , growth
can be computed according to the following algorithm:

Algorithm 4.2 (Growth of m one-dimensional crystals in the time interval (tj , tj+1)

without impingement).
for k = 1 to m do

1. If Tk ∈ (tj , tj+1) set ck = dk = Xk and s = Tk. Else, set s = tj if Tk < tj and
s = tj+1 if Tk > tj+1.

2. Compute (or approximate) the growth rate at the boundary points of the kth
crystal [ck, dk]:

G1 = G
(
T (ck, s)

)
, G2 = G

(
T (dk, s)

)
.

3. Update the boundary points by

ck = ck −G1(tj+1 − s), dk = dk +G2(tj+1 − s).
end

Of course, also more advanced schemes for the numerical integration of 4.3 can be
used in algorithm 4.2, and the algorithm can in principle also be carried over to higher
dimensions, where systems of ordinary differential equations can be derived for the evo-
lution of each point on the boundary (cf. [16,19]), but then an additional discretization
of the boundary of a crystal has to be performed (cf. [19]).
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If we are interested also in the effects of impingement, i.e., in monitoring the evo-
lution of the interface densities, Algorithm 4.2 has several disadvantages. Obviously,
in one spatial dimension, one can check if two crystals 	j and 	k intersect by simply
comparing ck with dj and dk with cj , but if we want to find all interfaces this method
is computationally expensive. Therefore, it also seems necessary to derive a faster nu-
merical method for the simulation of growth, which allows one to trace the interfaces
efficiently also in higher spatial dimensions.

The clue for such a method seems to be a change from the Lagrangian perspective
induced by (4.3) to an Eulerian approach, i.e., we fix locations in space and watch the
crystals arriving. We use this Eulerian viewpoint for a “pixel colouring” technique, i.e.,
we assign a number (respectively a colour) to each crystal and then assign this number
(colour) to the spatial locations (pixels) covered by the crystal. More precisely, we fix
a spatial grid (usually finer than the grid on which the temperature is assigned, because
of the larger scale of heat conduction with respect to growth) in the domain E and at
every time step we check for each grid point if it is inside a crystal (which is the case if
there exist a grid point of radial distance less than G0t); if yes, we assign the number of
the crystal to this point (respectively colour it). An additional speed-up can be achieved
by marking those grid points, which are at the boundary of a crystal and computing the
growth only there (all the points in the interior of a crystal do not provide additional
information).

If we have Kj marked pixels at time tj (i.e., the ones which are coloured and at
the boundary of a crystal), then we simulate the growth in a time step (tj , tj+1) in the
following way:

Algorithm 4.3 (Growth in a time interval (tj , tj+1) with impingement).
for k = 1 to Kj do

1. Compute the growth rate at the pixel pk: Gk = G(T (pk, tj )).
2. Compute the radius associated with the pixel pk: 0rk = Gk(tj+1 − tj ).
3. For every pixel p included in a disk centered at pk having radius 0rk do

• If p is not in the crystalline phase (uncoloured), assign to p the same
number of pk (colouring), mark p and compute the approximate time at
which it is captured by pk: τk = ‖p − pk‖/Gk.

• If p is already inside a crystal (i.e., it has been captured at a time τ )
and is marked, compute the time at which it is captured by pk: τk =
‖p − pk‖/Gk. If τk < τ , assign to p the number (colour) of pk .

end

4. Unmark pixel pk.

end
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Figure 3. Triangular mesh used for the finite element discretization of equation (4.4).

We note that step 3 ensures that every pixel assumes the colour of the first crystal by
which it is reached, independently from the order of checking of the marked pixels and
of the chosen time step. The accuracy of the algorithm increases as the step size in time
and the spatial grid size decrease; obviously they cannot be chosen independently, since
one should ensure that a crystal can really reach neighbouring grid points in one time
step, i.e., if h is the typical grid size and 0t the time step we need at least h < G00t ,
where G0 is a typical value of the growth rate.

4.3. An algorithm for the complete model

For the temperature we have to solve an equation of the form

Tt = div(D∇T )+ L ∂
∂t
I	t . (4.4)

The discretization can be performed via finite elements; we have used linear finite ele-
ments on a triangular mesh of the type shown in figure 3. The numerical method used
for the discretization of the stochastic term must be explicit, since the birth-and-growth
process is unpredictable. Because of the larger scale of heat conduction, we propose to
use a coarser grid for the heat equation than for the computation of growth. The use of
linear finite elements leads to a finite differences discretization for the diffusion term and
to a “smoothening” (spatial integral) of the source term via the test functions. With the
above approximations we can simulate the complete process as follows:

Algorithm 4.4 (Stochastic simulation of nonisothermal crystallization).
Start with the initial temperature T 0 and set 	0 = ∅.
Set j = 0: solve the discretized version of equation (4.4) via linear finite elements
and f 0(x) = f 1(x) = 0 ∀x ∈ E to obtain T 1.
for j = 1 to n− 1 do
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1. Approximate the nucleation rate in [tj , tj+1) by

α ∼ dÑ

dT

T j − T j−1

tj − tj−1
.

2. Simulate the nucleation in E×[tj , tj+1) according to algorithm 4.1 and add the
new generated nuclei to 	tj+1 .

3. Let the (old and new) crystals grow until time tj+1 and update 	tj+1 .

4. Compute the indicator function f j+1(x) = I	tj+1 (x).

5. Solve the discretized heat equation to obtain T j+1.

end

4.4. Computation of the surface density

In the one-dimensional case, the surface density can be computed easily from the
result of Algorithm 4.3 by counting the number of times that there is a colour change in
the pixels, moving in the interval E from its left to the right boundary point.

In two (or three) spatial dimensions, Algorithm 4.3 provides at every time step a 2D
(or 3D) matrix, in which different integer numbers (representing the colours) correspond
to different crystals, usually the empty space corresponds to the number 0. This vector
may be easily used to compute the mean local surface density of crystals SV (x) (i.e., the
mean length of edges of crystals per unit area). The method that we propose is based on
the estimate of the spherical contact distribution function [24,28].

Definition 4.5. Let 	 be a random closed set. Then the associated local spherical con-
tact distribution function is

Hs(r, x):= P
(
x ∈ 	⊕ b(0, r) | x /∈ 	)

,

where ⊕ denotes Minkowski addition and b(0, r) is a d-dimensional ball of radius r,
centered at the origin.

The estimate of SV is possible thanks to the following theorem, which has been
proven in [28].

Theorem 4.6. Let <(t) = ⋃
i ∂Ci(t) be the (random) set of the boundaries of the cells

of an (incomplete) Johnson–Mehl tessellation at time t , having Hausdorff dimension
d − 1. Let Hs(r, x, t) be the local spherical contact distribution function associated
with <(t) and let <r(t) be the parallel set of radius r of <(t)

<r(t) = <(t)⊕ b(0, r),
where b(x, r) is a d-dimensional ball of radius r centered at X. If the condition

lim
r→0

νd[<r(t) ∩ b(x, ε)]
r

= 2νd−1
(
∂<(t) ∩ b(x, ε)) (4.5)
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Figure 4. Top left: a simulated crystallization process. Top right: boundaries are recovered via an image
analiser. Bottom: parallel set of radius r of the detected boundaries.

is satisfied for all x ∈ Rd and for all ε ∈ R+, then the functionHs(r, x, t) is differentiable
at r = 0 for νd-almost all x, and its derivative satisfies

d

dr
Hs(r, x, t)|r=0 = 2SV (x, t). (4.6)

Formula (4.6) may be used to estimate SV from an estimator of Hs . Suppose to
recover a black-and-white image of the boundaries of the simulated crystals, as shown
in figure 4. Note that Hs(r, x, t) equals the local volume density of the parallel set
<r(t) of <(t) (since P(x /∈ <(t)) = 1 so that Hs(r, x, t) = P(x ∈ <(t) + b(0, r)) =
P(x ∈ <r(t))), which is in general nonzero, being <r(t) a set of Hausdorff dimension d.

The (local) volume density ξ(x) of a random set	 can be estimated by considering
an observation windowW(x), centered at x, sufficiently small so that the volume density
may be considered constant inside the window, but not too small with respect to the size
of the random set (if possible), so that the probability that the window is completely
occupied by the set or completely empty is nontrivial, i.e., is not 0 or 1 (usually if the
random set	 is a 2D black and white digitized image, the windowW(x)must be chosen
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much larger than the size of a pixel). Then a grid x1, . . . , xn of n points is overlapped to
the window W(x) and the local volume density of 	 is estimated by

ξ̂ (x) = 1

n

n∑
i=1

I	(xi).

This estimator is unbiased, with variance

σ 2 = 1

n2

(
nξ(x)

(
1− ξ(x)) + 2

∑
i>j

k(rij )

)
,

where rij = ‖xi−xj‖ and k is the covariance function of	 (see [24] for further details).
Thus, in our case an unbiased estimator of Hs(r, x, t) in a window W(x), with a grid
x1, . . . , xn, is

Ĥs(r, x, t) = 1

n

n∑
i=1

I<r (t)(xi).

An estimator of (d/dr)Hs(r, x, t)|r=0 may be obtained by numerical approximation

∂

∂r
Ĥs(r, x, t)|r=0 ≈ 4Ĥs(r, x, t) − ĤS(2r, x, t)

2r
,

for r > 0 small, since Hs(0, x, t) = 0 ∀x ∈ Rd,∀t ∈ R+ (this is a second-order scheme,
so that the resulting error is o(r2)). Thus, an estimator of the surface density SV (x, t) of
the random tessellation is

ŜV (x, t) = 1

2

Ĥs(r, x, t)

r
= 1

2nr

n∑
i=1

I<r (t)(xi).

5. Numerical results

For numerical experiments we used data from isotactic polypropylene (i-PP). Re-
ferring to the notations of equation (2.6), the quantities h, ρ, c, k have been assumed to
be constant and equal in the amorphous and in the crystalline phase, since their variabil-
ity for i-PP is relatively small. Thus, equations (2.6) and (2.7) may be rewritten as

Tt =D0T + L(I	t )t in E × R+, (5.1)

T = Tout on ∂E × R+, (5.2)

with D = 0.5 m2/s and L = 50◦C, which correspond to mean values of experimental
data.

For the nucleation and growth rate we used curves fitted to experimental data from
[26] of the form

G̃(T ) = 10y(T ), Ñ(T ) = 10z(T ),

where y is a piecewise quadratic and z is a piecewise linear spline (see figure 5).
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Figure 5. Growth rate G̃(T ) (left) and nucleation rate Ñ(T ) (right) as functions of temperature T .

All algorithms have been implemented with the Scientific Computing Tool
MATLAB, which was also used for the image analysis and visualization of results.

5.1. Numerical results in R1

The results of a one-dimensional stochastic simulation are shown in figure 6. The
simulation has been performed starting from a uniform temperature of 130◦C in the
whole domain E = (0, 1) at time t = 0 and suddenly cooling the boundary points
to 80◦C. The result clearly shows the strong effects on temperature due to the release
of latent heat and due to the small diffusion coefficient. The peaks in the temperature
profile are caused by new nucleations; they are smoothed in time because of diffusion. If
the temperature is kept only slightly below the melting point, the increase of temperature
due to the phase change may even stop the growth of nucleated crystals. This is evident
if we take into account impingement in the simulation, obtaining, thus, results as shown
in figures 7 and 8. In figure 8 the cones of influence of crystals are plotted, i.e., the
space–time region occupied by each growing crystal. It can be seen that already before
two crystals hit each other, their growth is almost stopped for a certain time because of
the increase of temperature and the consequent decrease of the growth rate.

A comparison of the results obtained from the stochastic model (2.6) and from
the deterministic system (2.11)–(2.14) is shown in figure 9. To compare the two mod-
els, 100 stochastic simulations, independent but with the same parameters, have been
performed. The crystallinity at time t has then been computed by averaging, both in
space and time, of the indicator function I	t computed in each stochastic simulation.
The result is compared with the correspondent crystallinity obtained by the determinis-
tic model (left); the same averaging procedure is applied to the temperature field, too.
The plot of the deterministic (solid) and averaged stochastic quantities (dashed), shows
good agreement in general, in particular for the degree of crystallinity. The results for
temperature shows that the deterministic model seems to react more slowly to changes
in the source term.
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Figure 6. Evolution of the indicator I	t (left) and of the temperature field (right) in a 1D stochastic simu-
lation with growth computed disregarding impingement.

Figure 7. Result of a 1D stochastic simulation with growth computed with the “pixel colouring” technique.
The blue zones are empty.
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Figure 8. Cones of influence in a 1D stochastic simulation (top) and a zoom of the same image (bottom).
Note that the growth of some crystals is stopped before impingement occurs by the increase of temperature

due to the release of latent heat.

We imposed a ratio between the nucleation rate α and the growth rate G̃ of the order
of 103 (in many practical examples it is much larger). It can be seen from the pictures
that already with this relatively small ratio between the two quantities the numerical
results are quite similar. Due to averaging arguments based on the law of large numbers
we expect an improvement for increasing nucleation rate, but so far we were not able to
realize such a case in reasonable computational time.
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Figure 9. Evolution of the crystallinity (on the left) and of the mean temperature (on the right) in the
stochastic and the deterministic models. The solid lines are the solutions of the deterministic model, the

dashed lines are the means of the stochastic simulations.

5.2. Numerical results in R2

A two-dimensional numerical experiment was performed on a rectangle, with the
same data for the parameters as in the one-dimensional case. We cooled the sample start-
ing from a uniform temperature of 120◦C and then cooling the boundary with constant
speed ∂T /∂t|∂E = 0.5 K·s−1. The results are shown in figures 10 and 11, the behaviour
is similar to the one-dimensional example; most crystals nucleate close to the boundary,
while the temperature in the interior is too high for significant nucleation.
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Figure 10. Evolution of the crystals in the stochastic simulation with cooling at the boundary.
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Figure 11. Evolution of the temperature field corresponding to the stochastic simulation of figure 10 with
cooling at the boundary.



190 A. Micheletti, M. Burger / Simulation of crystallization of polymers

Figure 12. Surface density computed at time t = 5 s on a single simulation.

Figure 13. Estimated mean surface density SV (x), computed at time t = 5 s averaging the stochastic
content of interfaces over 50 simulations.

The generated morphology is typical for an experiment with boundary cooling,
where there are many fine grains close to the boundary and few larger ones inside. In
figure 12 the estimated stochastic surface density ŜV , computed at time 5 s, is plotted.
Its mean SV (x) computed on 50 simulations is plotted in figure 13.
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6. Conclusions and open problems

We have shown above how nonisothermal crystallization can be simulated either
by a stochastic or a deterministic approach. While the deterministic model is based on an
approximation that works only under certain conditions (many and small crystals), the
stochastic simulation is expected to yield reasonable results in any case. Although the
numerical effort could be reduced significantly by algorithm 4.3 with respect to the first
approach, it is still very expensive to perform numerical experiments, in particular inR3.
The improvement of the methods used for computing as well as a rigorous mathematical
analysis are open problems for future work.

We note that real chemical experiments of the same kind could be performed in
a lab, by using thin slices of polymeric material, and cooling them via a thermostat
to control the temperature in the whole slice. The disadvantage of this technique is
that interfaces are often not clearly visible from microscope images of the crystallized
material, in particular when the number of generated crystals is very large. Instead it
is rather simple to distinguish and measure the length of the interfaces generated by
the simulator, by using some edge detector or image analizer. In practical applications,
the approximation by the simulator are much smaller than the information that can be
extracted from a picture of a real crystallized sample. Hence, this is a typical example in
which simulated data may effectively substitute the experimental ones.

Another problem related to the simulation of nonisothermal crystallization is the
optimal control of the process. In order to obtain good mechanical properties of the
solidified material, a uniform grain size distribution is desired. As we have seen in our
numerical experiments, a simple cooling strategy will not yield this result. Therefore,
one wants to find a temperature T 1 = T 1(x, t) in the boundary condition

∂T

∂n
= α(

T − T 1) (6.1)

such that the densities of the interfaces or the crystal sizes are as much uniform as pos-
sible.
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